Aviso: O site da UTFPR está sendo reestruturado. Você está visitando a nossa página antiga.

Neste momento de transição, algumas atualizações estão sendo realizadas na nova versão, disponível aqui

Você está aqui: Página Inicial curitiba Estrutura do Câmpus Diretorias Diretoria de Pesquisa e Pós-Graduação Mestrado e Doutorado CPGEI Edital de Defesas 2018 CPGEI (Mestrado): Matheus Gutoski - 03/04/18

CPGEI (Mestrado): Matheus Gutoski - 03/04/18

Defesa Pública de Mestrado do Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Quando 03/04/2018
das 14h00 até 17h00
Onde Sede Central: Sala C-301
Nome do Contato Prof. Heitor Silvério Lopes
Participantes Prof. Heitor Silvério Lopes, Dr. Orientador - UTFPR
Prof. André Eugênio Lazzaretti, Dr. Co-orientador - UTFPR
Banca examinadora:
Prof. André Eugênio Lazzaretti, Dr. Presidente - UTFPR
Profa. Lúcia Valéria Ramos de Arruda, Dra. - UTFPR
Prof. Alceu de Souza Britto Jr , Dr. - PUCPR
Prof. Chidambaram Chidambaram, Dr. - UDESC
Adicionar evento ao calendário vCal
iCal

Aprendizagem e transferência de extratores de características para detecção automática de anomalias em vídeos de segurança

Resumo: A vigilância automática de vídeos de segurança está se tornando um tema de grande importância no mundo atual. A quantidade de câmeras de vigilância em locais públicos e privados supera amplamente o número de humanos disponíveis para executar a tarefa de observação. Isto reduz a eficácia das câmeras, uma vez que as imagens de segurança geralmente são utilizadas após o ocorrido, em vez de permitir ações corretivas rápidas com base na detecção de eventos em tempo real. No entanto, a tarefa de conceber sistemas robustos de vigilância automática é bastante árdua. Este alto grau de dificuldade está associado ao problema da construção de modelos capazes de compreender a semântica humana. Os seres humanos têm a capacidade inata de observar um evento em andamento e julgar suas implicações, o que leva à tomada de decisões. Simular este entendimento em uma máquina, mesmo em um nível simplificado, tornou-se um verdadeiro desafio na pesquisa recente.
Visão Computacional, Aprendizagem de Máquina e Aprendizagem Profunda são áreas de estudo relacionadas à esta questão. Juntas, estas áreas alcançaram recentemente resultados impressionantes em uma ampla gama de tarefas relacionadas à visão, e fornecem métodos e ferramentas que podem ser usados para o problema de vigilância automática de vídeos de segurança.
Neste trabalho, o problema da vigilância automática é abordado a partir de uma perspectiva de detecção de anomalias. Para isto, um modelo de normalidade é aprendido a partir de vídeos previamente rotulados como normais por observadores humanos. Este modelo é então usando para detectar anomalias. Para alcançar este objetivo, a tarefa é dividida em duas subtarefas principais: extração de características e classificação. As contribuições deste trabalho estão principalmente relacionadas ao processo de extração de características, onde foram propostos dois métodos baseados em Aprendizagem Profunda. O primeiro método baseia-se na transferência de conhecimento de uma tarefa completamente independente para a detecção de anomalias em vídeos de segurança. A ideia é investigar a extensão da capacidade de generalização de um modelo, usando-o para executar uma tarefa completamente nova e inesperada.
O segundo método é baseado em aprender um extrator de características que extrai representações compactas dos vídeos de segurança. Este método foi investigado sob a hipótese de que a criação de grupos compactos no espaço de características pode levar a um maior desempenho de classificação.
A classificação é realizada por Máquinas de Vetores de Suporte de uma classe em ambos os métodos. Os resultados mostram que o primeiro método apresentou desempenho semelhante aos métodos considerados estado da arte, o que leva à conclusão de que a capacidade de generalização de alguns modelos de Aprendizagem Profunda pode ser estendida para diferentes tarefas. Os resultados usando o segundo método corroboraram com a hipótese de compacidade, onde um ganho no desempenho da classificação foi obtido após tornar as representações compactas. Em geral, é possível concluir que ambos os métodos se mostram promissores para melhorar o processo de extração de características e podem ser importantes contribuições para sistemas robustos de detecção automática de anomalias em vídeos de segurança.
Palavras-chave: Detecção de anomalias em vídeos; Extração de Características, Aprendizado Profundo

Learning and Transfer of feature extractors for automatic anomaly detection in surveillance videos

Abstract: Automatic video surveillance is becoming a topic of great importance in the current world. Surveillance cameras in private and public spaces greatly outnumber the humans available for performing the observation task. This hinders the effectiveness of the cameras, since the footage is often used much after the event has occurred, rather than allowing for quick corrective action based on real time detection of events. However, the task of devising robust automatic surveillance systems is a rather difficult one. This high degree of difficulty is associated to the problem of building models able to understand human semantics. Humans have the innate ability to observe an ongoing event and judge its implications, which then leads to decision making. Simulating this understanding in a machine, even to the slightest degree, has become a real challenge in recent research.
Computer Vision, Machine Learning and Deep Learning are fields of study deeply connected to this issue. Together, these fields have recently achieved impressive results across a wide array of vision related tasks, and provide methods and tools that can be used for the automatic video surveillance problem.
In this work, the problem of automatic surveillance is approached from an anomaly detection perspective. It consists of learning a model of normality from videos previously labeled as normal by human observers, and then using this model for detecting anomalies. To achieve this goal, the task of divided into two main subtasks: feature extraction and classification. The contributions of this work are mainly related to the feature extraction process, where two methods based on Deep Learning were proposed. The first method is based on transferring knowledge from a completely unrelated task to video anomaly detection. The idea is to investigate the extent of the generalization capacity of a model, by using it for performing a completely new and unexpected task.
The second method is based on learning a feature extractor that extracts compact feature representations from surveillance video datasets. This method was investigated under the hypothesis that creating compact clusters in the feature space may lead to increased classification performance.
Classification is performed by One-Class Support Vector Machines in both methods. Results have shown that the first method had a performance similar to state-of-the-art methods, which leads to the conclusion that the generalization capacity of some Deep Learning models can be extended to different tasks. The results using the second method have corroborated to the compactness hypothesis, where a gain in classification performance was obtained after introducing compactness. In general, it is possible to conclude that both methods show great promise for enhancing the feature extraction process, and can be worthy contributions towards robust automatic video anomaly detection systems
Keywords: Video Anomaly Detection; Feature Extraction; Deep Learning

Lista de publicações:

GUTOSKI, M.; RIBEIRO, M. ; AQUINO, N. M. R. ; LAZZARETTI, A. E. ; LOPES, H. S. . Clustering-Based Deep Autoencoder for One-Class Image Classification. In: 4th IEEE Latin American Conference on Computational Intelligence LA-CCI, 2017, Arequipa. Proceedings of 4th IEEE LA-CCI. Piscataway: IEEE press, 2017.

AQUINO, N. M. R. ; RIBEIRO, M. ; GUTOSKI, M. ; BENITEZ, C. V. ; LOPES, H. S. . A Gene Expression Programming Approach for Evolving Multi-Class Image Classifiers. In: 4th IEEE Latin American Conference on Computational Intelligence LA-CCI, 2017, Arequipa. Proceedings of 4th IEEE LA-CCI. Piscataway: IEEE press, 2017.

AQUINO, N. M. R. ; GUTOSKI, M. ; HATTORI, L. T. ; LOPES, H. S. . The effect of data augmentation on the performance of convolutional neural networks. In: XIII Brazilian Congress on Computational Intelligence, 2017, Niterói. Anais do XIII CBIC, 2017.

AQUINO, N. M. R. ; GUTOSKI, M. ; HATTORI, L. T. ; LOPES, H. S. . Soft Biometrics Classi cation Using Denoising Convolutional Autoencoders and Support Vector Machines. In: XIII Brazilian Congress on Computational Intelligence, 2017, Niterói. Anais do XIII CBIC, 2017.

HATTORI, L. T. ; GUTOSKI, M. ; AQUINO, N. M. R. ; LOPES, H. S. . Patch-Based Convolutional Neural Network for the Writer Classi cation Problem in Music Score Images. In: XIII Brazilian Congress on Computational Intelligence, 2017, Niterói. Anais do XIII CBIC, 2017.

GUTOSKI, M.; AQUINO, N. M. R. ; RIBEIRO, M. ; LAZZARETTI, A. E. ; LOPES, H. S. . Detection of Video Anomalies Using Convolutional Autoencoders and One-Class Support Vector Machines. In: XIII Brazilian Congress on Computational Intelligence, 2017, Niterói. Anais do XIII CBIC, 2017.

Ações do documento